FireHydrant
Building Mission-Critical
Reliability:

A Technical Guide to FireHydrant
Signals’ High-Avallablility Alert Systems

¢4 FireHydrant

Executive Summary

When critical systems fail, alerting infrastructure becomes the lifeline for engineering teams. This
white paper examines the comprehensive architectural strategies and redundancy mechanisms that
enable FireHydrant Signals to achieve 99.99% uptime, ensuring that when everything else fails, your

alerts still get through.

Through rigorous engineering and proven architectural patterns, Signals provides enterprise-grade

alerting with:

* 99.99% uptime SLOs backed by multi-region active-active deployments that eliminate single

points of failure

» Zero-downtime operations

through automated failover TABLE OF CONTENTS
mechanisms that seamlessly 1. The Imperative for Absolute Reliability
redirect traffic during outages

Foundational Architecture Decisions

» Trueservice independence Multi-Region Strategy for Global Resilience
where alert delivery continues

> WD

Service Independence and Graceful
Degradation

even when primary systems are
completely offline

5. Ensuring Message Delivery Through

* Unlimited scalability via Redundancy

stateless architecture that
6. Operational Excellence and Continuous

scales linearly with demand o
Reliability

* Comprehensive redundancy 7. Building Customer Trust Through

across every layer, from Transparency

notification channels to data

centers 8. Conclusion: A New Standard for Reliability

This document provides technical
and strategic insights for organizations
evaluating or implementing FireHydrant Signals as their mission-critical alerting infrastructure,

demonstrating why Signals is the foundation of reliable incident response.

¢4 FireHydrant

THE IMPERATIVE FOR ABSOLUTE RELIABILITY

When Failure Is Not an Option

In the modern digital economy, system outages directly translate to revenue loss, damaged
reputation, and eroded customer trust. The irony of incident management is stark: the very moment
when alerting systems are most critical (during widespread failures) is when they face their greatest

challenges.

Consider scenarios in which major cloud providers experience regional outages, affecting thousands
of services simultaneously. In these moments, alert volumes can spike 100x normal levels while

traditional communication channels become unreliable.

The True Cost of Alerting Failures

When alerting systems fail, the cascade effects are severe:

« Extended Time to Detection: \Without functioning alerts, teams may not discover critical

issues until customers report them, adding precious minutes or hours to resolution times.

- Delayed Incident Response: Even when issues are detected, the inability to page on-call

engineers means mobilization delays that compound customer impact.

« Communication Breakdown: During major incidents, coordinated response depends on
reliable communication. Without it, teams work in silos, duplicating effort and missing critical

dependencies.

« Compliance Violations: Many industries require demonstrable incident notification

capabilities; alerting failures can result in regulatory penalties.

This reality demands a fundamental rethinking of how alerting systems are architected. With
FireHydrant Signals, we moved beyond traditional high-availability approaches to construct a true

fault-tolerant design.

¢4 FireHydrant

FOUNDATIONAL ARCHITECTURE DECISIONS

Technology Selection for Uncompromising
Reliability

The foundation of any reliable system lies in its technology choices. Each component in the stack
must be selected not just for its features, but for its proven ability to operate under extreme

conditions.

Container Orchestration with Kubernetes

Kubernetes has emerged as the de facto standard for reliable service deployment, which is why there
was no question around why we built Signals on it. The platform’s self-healing capabilities mean that
failed containers are automatically detected and replaced without human intervention. Kubernetes’
pod distribution algorithms ensure that services are spread across available infrastructure, preventing
localized hardware failures from causing service outages. The rolling update mechanisms allow for
zero-downtime deployments, critical for maintaining availability during frequent updates that security

and feature improvements demand.

High-Performance Processing with Go

Go’s lightweight concurrency model enables a single service instance to handle thousands of
simultaneous alert deliveries without the overhead of traditional thread-based systems. Its memory-
safe design eliminates entire classes of bugs that could cause service crashes, while its fast
compilation and startup times mean services can be rapidly deployed or recovered. The language’s
simplicity also reduces the likelihood of subtle bugs that could compromise reliability. Signals’ use of

Go ensures alert delivery remains performant and reliable even under massive load spikes.

Durable Workflow Execution with Temporal

Perhaps no decision impacts reliability more than the choice of workflow orchestration. In Signals,
Temporal provides a revolutionary approach to handling long-running operations like escalation
policies. Unlike traditional queue-based systems, Temporal maintains a complete event history for

every workflow, enabling recovery from any point of failure.

If a service crashes mid-escalation, Temporal automatically replays the workflow history to reconstruct
the exact state, then continues execution as if nothing happened. This durability even extends across

data center boundaries: workflows can be resumed in entirely different regions without data loss.

¢4 FireHydrant

STATELESS ARCHITECTURE

The Key to Infinite Scale

Traditional stateful services create inherent limitations on scalability and reliability. By embracing
stateless design principles, Signals achieves remarkable flexibility. Each service instance becomes
interchangeable — any request can be handled by any instance, eliminating complex session affinity
requirements. This enables true horizontal scaling where capacity can be added simply by deploying

more instances, with no architectural limits on growth.

The benefits extend beyond scalability. Stateless services can be killed and restarted at will without
losing in-flight operations. During deployments, traffic seamlessly shifts to healthy instances with no
user impact. When entire data centers fail, services in other regions immediately take over the load

without complex state synchronization.

Data Layer Redundancy Without Compromise

While services can be stateless, data must be preserved with absolute reliability. Signals implements

multiple layers of data redundancy:

+ Synchronous In-Region Replication ensures that every write is immediately copied to
multiple database instances within the same data center. This protects against individual
server failures while maintaining the strong consistency required for critical configuration
data.

« Asynchronous Cross-Region Replication provides disaster recovery capabilities by
continuously copying data to geographically distant locations. This ensures that even

catastrophic regional failures cannot cause data loss.

« Intelligent Read Distribution leverages read replicas to distribute query load, preventing
database bottlenecks during high-volume incidents. The system automatically routes read

operations to the nearest available replica, optimizing both performance and reliability.

¢4 FireHydrant

Service Independence and Graceful
Degradation

Microservice Architecture That Actually Delivers

While microservices have become an industry buzzword, their implementation in mission-critical
systems requires exceptional discipline. Signals’ microservice design emphasizes true independence
and isolation, meaning each service operates in its own failure domain with no shared dependencies

that could create cascading failures.
The architecture achieves this isolation through several key design principles:

Dedicated Infrastructure Per Service: Each core component within Signals runs on isolated
compute resources, with distinct memory, CPU, and network quotas. Each service is deployed and

managed separately, preventing resource contention even during sudden workload spikes.

The Signals alert delivery service is federated across two distinct, physically-separated clusters.
This provides for physical isolation of networking resources, ensuring they aren't reliant on the
overall cluster health, as well as a redundant layer of compute resources. If one cluster, or even the
entire region it exists in, experiences degraded or no service, the other region will continue to serve

requests and dispatch alerts normally.

Independent Data Stores: Services never share databases or caches. The alert routing service
maintains its own optimized data store containing only the routing rules it needs. This local data is
periodically synchronized but operates autonomously. If the central configuration service fails, routing

continues uninterrupted using the last known good configuration.

Isolated Network Paths: Network segmentation ensures that services communicate through
well-defined APIs with no backdoor dependencies. FireHydrant’s alert delivery pipeline has its

own dedicated network path to external providers (SMS, voice, email, etc.), isolated from general
application traffic. This prevents scenarios where high web traffic could delay critical alert delivery.
Note that Slack is the exception here. While fully supported, it doesn’t offer the same network

isolation. For critical alerts, SMS, voice, and email remain the most reliable channels.

Autonomous Operation: Services are designed to operate with zero dependencies on other internal
services. The SMS delivery service, for instance, needs only an alert payload and recipient information

to function. It doesnt call back to check user preferences, validate permissions, or log analytics —

¢4 FireHydrant

all necessary data is included in the initial request or cached locally. Similar to above, Slack doesn’'t
provide isolated network paths. We recommend treating SMS, voice, and email as the most reliable

channels for urgent alerts.

Degradation That Users Never Notice

Should partial failures occur, Signals’ isolation architecture enables selective degradation that
preserves critical functionality. Non-essential services can fail completely without impacting alert

delivery. When impacted by an incident, the system automatically sheds non-critical load, such as:

» Analytics and reporting pipelines continue collecting data but may delay processing
» User preference updates queue for later processing

» Historical data queries return cached results

» Ul dashboards show slightly stale data

Meanwhile, the critical path — alert ingestion, routing, and delivery — continues at full speed with

full functionality. Users receive their alerts with the same reliability and speed, even as other parts of
the system gracefully degrade. This selective degradation is possible only because of the complete
isolation between services. There are no hidden dependencies that could cause unexpected impacts

on critical paths.

Operational Excellence and Continuous
Reliability

Beyond Building: Operating for Reliability

Creating reliable systems is only the beginning. Maintaining that reliability requires operational
excellence that matches the architectural sophistication. At FireHydrant, this starts with

comprehensive monitoring that goes beyond simple uptime metrics.

End-to-End Synthetic Monitoring continuously exercises the complete alert path. Synthetic alerts
flow through the entire system — from initial ingestion through final delivery — validating that every
component functions correctly. These tests run from multiple global locations, ensuring that regional
issues are detected immediately.

¢4 FireHydrant

Component-Level Health Tracking provides deep visibility into system internals. Every service
exposes detailed metrics about its operations: queue depths, processing latencies, error rates, and
resource utilization. These metrics feed into sophisticated anomaly detection that identifies problems

before they impact users.

Proactive Capacity Management ensures that systems never approach their limits. Automated
scaling responds to load changes, while capacity planning models predict future needs based on
growth trends. Regular load testing validates that systems can handle 10x current volumes, providing

confidence during unexpected spikes.

Building Customer Trust Through Transparency

Proven Track Record of Reliability

Trust in FireHydrant Signals comes from demonstrated reliability and openness. Here’s how we

accomplish that:

Published SLO Performance: Historical achievement of uptime targets, including 99.99% uptime for

Signals.
Detailed Architecture Documentation: Transparent explanation of how reliability is achieved.

Third-Party Audits and Certifications: SOC 2 Type |l reports, ISO certifications, and penetration

testing provide independent validation.

Customer References and Case Studies: Customers that successfully run their on-call and alerting

on Signals, including Qlik, Backblaze, and AuditBoard.

¢4 FireHydrant

CONCLUSION

A New Standard for Reliability

FireHydrant Signals represents a fundamental shift: from simple notifications to sophisticated
reliability infrastructure. By combining proven architectural patterns, operational excellence, and
transparent communication, Signals has been able to achieve reliability levels that were previously

impossible.

The 99.99% uptime achieved through these approaches isn't just a metric — it represents our
commitment to being available when customers need it most. Through multi-region deployments,
service independence, comprehensive redundancy, and operational excellence, Signals has become

the bedrock upon which reliable operations are built.

For organizations evaluating alerting solutions, the message is clear: reliability can no longer be
treated as a nice-to-have feature. With Signals, reliability is built into every architectural decision,

setting a new standard for what alerting infrastructure should deliver.

For more information about implementing enterprise-grade alerting infrastructure that your

organization can depend on, contact the FireHydrant team.

https://firehydrant.com/demo/

